|
Олимпиадные задачи
Задача 1
На 44 деревьях, расположенных по кругу, сидели по веселому чижу. Время от времени какие-то два чижа перелетают на соседнее дерево – один по часовой стрелке, а другой – против. Могут ли все чижи собраться на одном дереве?
Решение
|
Задача 2
В хоре число девочек относилось к числу мальчиков как 4:3. После того как в хор пришли двое новеньких, это соотношение стало 3:2. Сколько мальчиков было в хоре вначале?
Решение
|
Задача 3
В школе все учащиеся сидят за партами по двое, причем у 60% мальчиков сосед по парте - тоже мальчик, а у 20% девочек сосед по парте - тоже девочка. Сколько процентов учащихся этой школы составляют девочки?
Решение
|
Задача 4
Дворники получают грабли и метлы. Если каждый возьмет одну метлу или одни грабли, то останется 14 метел. А чтобы дать каждому дворнику и одну метлу, и одни грабли, не хватает 10 грабель. Сколько было дворников, сколько метел и сколько грабель?
Решение
|
|